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By using a so-called extended double (ED)-complex method, the previously found
doubleness symmetry of the dimensionally reduced Einstein–Kalb–Ramond (EKR)
theory is further exploited. A 2d × 2d matrix double-complex H-potential is con-
structed and the field equations are written in a double-complex formulation. A pair
of ED-complex Hauser–Ernst-type linear systems are established. Based on these linear
systems, explicit formulations of new double hidden symmetry transformations for the
EKR theory are given. These symmetry transformations are verified to constitute double
infinite-dimensional Lie algebras, each of which is a semidirect product of the Kac–

Moody ô(d, d) and Virasoro algebras (without center charges). These results demon-
strate that the EKR theory under consideration possesses richer symmetry structures
than previously expected, and the ED-complex method is necessary and more effective.
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1. Introduction

Owing to their importance in theoretical and mathematical physics, the studies of

symmetries for the dimensionally reduced low energy effective (super)string theories

have attracted much attention in the recent past (see e.g. Refs. 1–26). Such effective

string theories describe various interacting matter fields coupled to gravity, the

effective heterotic string theory describing the Einstein and Kalb–Ramond (EKR)

fields15,16 is a typical model of this kind. Some symmetries for the EKR theory

have been found and some analogies between it and the reduced vacuum Einstein

theory have been noted. However, many scalar functions in pure gravity correspond,

formally, to matrix ones in the EKR theory, thus the noncommuting property of

the matrices gives rise to essential complications for the further study of the latter.
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Moreover, some particular relations, such as for any 2 × 2 matrix A: A>εA =

(det A)ε, A>ε + εA = (tr A)ε
(

with ε =
(

0
−1

1
0

))

have no general analogues for

higher-dimensional n × n (n ≥ 3) matrices, while these relations are useful and

important in some studies of the reduced vacuum gravity (e.g. Refs. 27–31). Since

in the studies of the EKR theory, we deal mainly with 2d × 2d function matrices

and in general d ≥ 2, so some deeper researches and further extended studying

methods are needed.

The present paper is a continuation of our previous paper.26 In this paper, by

using a so-called extended double (ED)-complex function method,32 the previously

found doubleness symmetry26 of the EKR theory is further exploited. A double-

complex 2d × 2d matrix H-potential is constructed and the motion equations are

extended into a double-complex form in terms of this H-potential. Moreover, we

further find that a pair of ED-complex Hauser–Ernst (HE)-type linear systems can

be established, and based on these linear systems, new infinitesimal double sym-

metry transformations for the EKR theory are explicitly constructed. Then these

symmetry transformations are verified to constitute double infinite-dimensional Lie

algebras, each of which is a semidirect product of the Kac–Moody ô(d, d) and Vira-

soro algebras (without center charges). These results demonstrate that the theory

under consideration possesses richer symmetry structures than previously expected,

and the ED-complex method is necessary and more effective.

In Sec. 2, some related concepts and notations of the ED-complex functions32

and the double-complex matrix Ernst formulation of the EKR field equations26 are

briefly recalled. In Sec. 3, a double-complex matrix H-potential is constructed and

a pair of ED-complex HE-type linear systems are established. In Sec. 4, by virtue of

these linear systems, we give explicit expressions of some infinitesimal double trans-

formations for the studied theory and then verify that these transformations are all

double hidden symmetries of the EKR theory. The double infinite-dimensional Lie

algebra structure of these hidden symmetries is calculated out in Sec. 5. Finally,

Sec. 6 gives some summary and discussions.

2. ED-Complex Function and Double-Complex Matrix Ernst

Equations of the EKR Theory

For the later use, here we briefly recall some related concepts and notations of the

ED-complex function32 and the double-complex matrix Ernst formulation of the

EKR field equations.26

2.1. ED-complex function32

Let i and J denote, respectively, the ordinary and the ED imaginary unit. We shall

concern ourselves mainly with some special values of J , i.e. J = j (j2 = −1, j 6= ±i)

or J = ε (ε2 = +1, ε 6= ±1). If a series
∑

∞

n=0 |an|, an ∈ C (ordinary complex

number) is convergent, then a(J) =
∑∞

n=0 anJ2n is called an ED ordinary complex
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number, which can correspond to a pair (aC , aH) of ordinary complex number,

where aC := a(J = j), aH := a(J = ε). When a(J) and b(J) both are ED ordinary

complex numbers,

c(J) = a(J) + Jb(J) (2.1)

is called an ED-complex number, it can correspond to a pair (cC , cH), where cC :=

c(J = j) = aC + jbC , cH := c(J = ε) = aH + εbH . If a(J) and b(J) are real,

we call them double-real and call the corresponding c(J) simply a double-complex

number.33

We would like to point out that, from the above definitions, J should be taken as

an indeterminate rather than a discrete variable. The ED-complex method can be

regarded as some “deformation” theory, in which J plays the role of “deformation

parameter” (or analytical link, cf. Ref. 33 for nonextended case). By doubleness

symmetry we in fact mean the symmetry property of the considered theory under

this “deformation.” We call it an ED-complex method only because in most of its

applications (e.g. in the present paper) we are mainly interested in the cases of

J = j and J = ε.

All ED-complex numbers with usual addition and multiplication constitute a

commutative ring. Corresponding to the two imaginary units J and i in this ring, we

have two complex conjugations: ED-complex conjugation “?” and ordinary complex

conjugation “−”:

c(J)? := a(J) − Jb(J) , c(J) := a(J) + J b(J) . (2.2)

These imply that J? = −J , J̄ = J , i? = i, ī = −i. If a(J) and b(J) are ED

ordinary complex functions of some ordinary complex variables z1, . . . , zn, then

c(z1, . . . , zn; J) = a(z1, . . . , zn; J) + Jb(z1, . . . , zn; J) is called an ED-complex func-

tion. We say c(z1, . . . , zn; J) to be continuous, analytical, etc. if a(z1, . . . , zn; J) and

b(z1, . . . , zn; J) both, as ordinary complex functions, have the same properties. We

also need ED-complex (function) matrices, and for an ED-complex matrix W (J),

we define

W (J)+ := [W (J)?]> , (2.3)

“>” denotes the transposition.

2.2. Double-complex matrix Ernst formulation of the

EKR field equations 26

We start with the action describing a system arising in the low energy limit of

heterotic string theory as

S =

∫
[

R + GMN∂MΦ∂NΦ −
1

12
HMNLH

MNL

]

e−Φ
√

|G|d3+dx , (2.4)
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where R is the Ricci scalar for the metric GMN (M, N = 0, 1, . . . , 2 + d), Φ is the

dilaton field and

HMNL = ∂MBNL + cyclic , (2.5)

while BNL is antisymmetric Kalb–Ramond field and HMNL is called nondualized

axion field.

According to Maharana and Schwarz1 and Sen,2,3 when dimensionally reduc-

ing from 3 + d to 3 dimensions by compactification on a d-dimensional torus, one

can obtain “three-dimensional fields” Gmn, Bmn, φ, A
(a)
µ , gµν and Bµν (m, n =

1, 2, . . . , d; µ, ν = 0, 1, 2; a = 1, 2, . . . , 2d) through the relations

Gmn = Gm+2,n+2 , Bmn = Bm+2,n+2 , gµν = Gµν − GmnGm+2,µGn+2,ν ,

A
(m)
µ =

1

2
GmnGn+2,µ , A(d+m)

µ =
1

2
GmnBn+2,µ − GmlBlnA(n)

µ ,

Bµν = Bµν − 4A
(m)
µ BmnA

(n)
ν − 2

(

A
(m)
µ GmnA

(d+n)
ν − A

(m)
ν GmnA

(d+n)
µ

)

,

φ = Φ −
1

2
ln det G ,

(2.6)

and express the reduced theory in terms of these fields. In (2.6), Gmn denotes the

inverse of the matrix Gmn and φ is called a shifted dilaton field. In the present

paper, motivated by Ref. 15, we take the ansatz

Gµ,n+2 = Bµ,n+2 = 0 ; φ = 0 . (2.7)

From Eqs. (2.6), the conditions (2.7) lead further to A
(a)
µ = 0 (a = 1, 2, . . . , 2d),

and it can be seen that such restrictions do not provide any further constrains

on the remainder field variables. Noted the absence of the gauge vector fields and

the shifted dilaton field, we call the model under consideration as Einstein–Kalb–

Ramond (EKR) theory.

Following Ref. 15, we now consider the time-independent field configurations of

the above EKR theory with axisymmetry, in which the three-dimensional metric

can be parametrized as

ds2 = ρ2 dx0 dx0 − e2γδAD dxA dxD , A, D = 1, 2 . (2.8)

After reducing to this case and using the fact that the antisymmetric tensor field

Bµν have no dynamics in two dimensions, in addition to the above metric fields,

the set of nontrivial EKR dynamical quantities also contains G := {Gmn} and

B := {Bmn} (both denoted by d × d matrices), and all of these fields are assumed

to depend only on x1, x2. For simplicity, we denote x1, x2 by x, y in the following.

In terms of these, the essential dynamical equations of the EKR theory can be

written as15

d(ρG−1 ∗dBG−1) = 0 , d(ρ ∗dG G−1 − ρBG−1 ∗dB G−1) = 0 , (2.9)
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and ρ = ρ(x, y) > 0 is a harmonic function in two-dimensional {x, y}. Where

the notations of differential form are adopted, “∗” is the dual operation of two-

dimensional Euclidean space, and from (2.6) the real matrices G and B satisfy

G> = G , B> = −B . (2.10)

Moreover, according to the Einstein equations15,34 the field γ(x, y) in (2.8) can be

obtained by a simple integration provided G, B are known, so we shall focus our

attention on Eqs. (2.9) in the following.

As pointed out in Ref. 26, the EKR theory under consideration possesses a

so-called doubleness symmetry such that Eqs. (2.9) can be extended into a double-

complex matrix Ernst-like formulation:

ρ−1d(ρ ∗dE(J)) = dE(J)G(J)−1 ∗dE(J) , (2.11)

where E(J) = G(J) + JB(J) (with G(J)> = G(J), B(J)> = −B(J) both are

double-real d × d matrices) is called a matrix double-complex Ernst-like potential

of the EKR theory, and the wedge symbol “∧” in exterior products of differential

forms is omitted for simplicity. If a solution E(J) of Eq. (2.11) is known, we can

obtain a pair of real solutions of the EKR theory.

3. Double-Complex H-Potential and ED-Complex HE-Type

Linear Systems

We introduce a double-real 2d × 2d matrix function M(J) = M(x, y; J), which

satisfies

M(J)> = M(J) , (3.1a)

M(J)ηM(J) = −J2ρ2η , (3.1b)

η :=

(

0 Id

Id 0

)

, (3.1c)

where Id is the d-dimensional unit matrix. Taking the decomposition of M(J) as

M(J) =

(

G(J) −G(J)B(J)

B(J)G(J) −B(J)G(J)B(J) − J2ρ2G(J)−1

)

, (3.2)

then Eq. (2.11) can be equivalently written as

d(ρ−1M(J)η ∗dM(J)) = 0 . (3.3)

According to the spirit of Ref. 26, if a solution of Eq. (3.3) with conditions (3.1) is

known, then by the decomposition (3.2), we can obtain real solutions of the EKR

theory in pairs as follows:

(G, B) = (T (GC), BC) , (3.4a)

(Ĝ, B̂) = (GH , VGH
(BH)) , (3.4b)
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where the transformations T , V are defined by

T : G → T (G) = ρG−1 ,

V : G, B → VG(B) =

∫

ρG−1(∂yB)G−1 dx − ρG−1(∂xB)G−1 dy ,
(3.5)

and the existence of VGH
(BH) is ensured by the J = ε case of Eq. (3.3).

Obviously, Eqs. (3.3) and (3.1) are invariant under the global transformations:

M(J) → P>M(J)P , P ∈ O(d, d). Of course, also as will be seen in the follow-

ing, the symmetry structures of the considered EKR theory are very much richer

than this.

Equation (3.3) implies that we can introduce a double-real 2d× 2d matrix twist

potential Q(J) = Q(x, y; J) such that

dQ(J) = −ρ−1M(J)η ∗dM(J) . (3.6)

Using (3.1), we obtain from (3.6)

dM(J) = −ρ−1J2M(J)η ∗dQ(J) . (3.7)

Now introducing a 2d × 2d matrix double-complex H-potential

H(J) := M(J) + JQ(J) (3.8)

and denoting Ω := Jη, then Eqs. (3.6) and (3.7) can be equivalently written as a

single double-complex matrix equation

dH(J) = −ρ−1M(J)Ω ∗dH(J) . (3.9)

Furthermore, from (3.1) and (3.6) we have d(Q(J)+Q(J)>) = 2J2 ∗dρ η. Thus,

from the harmony of ρ(x, y), we can introduce another real field z = z(x, y) such

that ∗dρ = dz and obtain Q(J) + Q(J)> = 2J2zη. These relations and Eqs. (3.1),

(3.8) imply that we can express Eq. (3.9) as

2(z + ρ∗)dH(J) = (H(J) + H(J)>)Ω dH(J) (3.10)

with (3.1), this is equivalent to (3.3). In addition, from (3.10) we can obtain

dH(J)>Ω dH(J) = dH(J)>Ω ∗dH(J) = 0 . (3.11)

Now we introduce an ordinary complex parameter t and define

A(t; J) := I − t[H(J) + H(J)>]Ω ,

(I is the 2d-dimensional unit matrix) , (3.12)

Γ(t; J) := tΛ(t)−1dH(J) , (3.13)

Λ(t) := 1 − 2t(z + ρ∗) , Λ(t)−1 = λ(t)−2[1 − 2t(z − ρ∗)] , (3.14)

λ(t) := [(1 − 2zt)2 + (2ρt)2]1/2 , (3.15)
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then Eq. (3.10) can be rewritten as

tdH(J) = A(t; J)Γ(t; J) . (3.16)

From Eqs. (3.11), (3.12) and (3.16), we can obtain dΓ(t; J) = Γ(t; J)ΩΓ(t; J), this

is just the complete integrability condition of the following ED-complex linear dif-

ferential equation:

dF (t; J) = Γ(t; J)ΩF (t; J) , (3.17)

where F (t; J) = F (x, y, t; J) is a 2d×2d ED-complex matrix function of x, y and t.

Equation (3.17) does not define F (t; J) uniquely, so we suppress some subsidiary

conditions consistent with above equations and the requirement that F (t; J) be

holomorphic in a neighborhood of t = 0. From (3.16), (3.17) and the relation

2tΛ−1dz = −λ(t)−1dλ(t) we have

dF (0; J) = 0 , d[Ḟ (0; J) − H(J)ΩF (0; J)] = 0 ,

d[λ(t)F (t; J)+ΩF (t; J)] = 0 , d[F (t; J)>ΩA(t; J)F (t; J)] = 0 ,

where Ḟ (t; J) := ∂F (t; J)/∂t and the ED-Hermitian conjugation “+” is defined by

(2.3). These equations and (3.17) determine F (t; J) up to right-multiplication by

an arbitrary nondegenerate 2d×2d matrix function of t, so we can use this freedom

and choose the integral constants consistently such that

F (0; J) = I , (3.18a)

Ḟ (0; J) = H(J)Ω , (3.18b)

λ(t)F (t; J)+ΩF (t; J) = Ω , (3.19a)

F (t; J)>ΩA(t; J)F (t; J) = Ω . (3.19b)

We call Eqs. (3.17)–(3.19) an ED-complex HE-type linear system for the EKR

theory.

Besides, we can establish another ED-complex linear system of the EKR theory.

Now, for another ordinary-complex parameter w, we define

Ã(w; J) := w − (H(J) + H(J)>)Ω , (3.20)

Γ̃(w; J) := Λ̃(w)−1dH(J) , (3.21)

Λ̃(w) := w − 2(z + ρ∗) , Λ̃(w)−1 = λ̃(w)−2[w − 2(z − ρ∗)] , (3.22)

λ̃(w) := [(w − 2z)2 + (2ρ)2]1/2 . (3.23)

Then Eq. (3.10) can be rewritten as

dH = Ã(w; J)Γ̃(w; J) , (3.24)

by derivations similar to the above, we have

dF̃ (w; J) = Γ̃(w; J)ΩF̃ (w; J) , (3.25)
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and require consistently that F̃ (w; J) be analytic around w = 0 and satisfy

λ̃(w)F̃ (w; J)+ΩF̃ (w; J) = Ω , (3.26a)

F̃ (w; J)>ΩÃ(w; J)F̃ (w; J) = Ω , (3.26b)

where F̃ (w; J) = F̃ (x, y, w; J) is another ED-complex 2d× 2d matrix function of x,

y and w.

4. Parametrized Double Symmetry Transformations

By virtue of solutions F (t; J), F̃ (w; J) of linear systems (3.17)–(3.19) and (3.25),

(3.26), we can explicitly construct parametrized double symmetry transformations

for the EKR theory. At first, from definitions (3.8), (3.12)–(3.15) and (3.20)–(3.23),

we may consistently choose the ED-complex matrix functions F (t; J) and F̃ (w; J) as

F (t; J) = F (t̄; J) , F̃ (w; J) = F̃ (w̄; J) (4.1)

(i.e. the ED-real and imaginary parts of F (t; J) and F̃ (w; J) are double ordinary

real when t and w are real) in order to ensure the reality of M(J) and Q(J) in the

transformed H(J). We shall take this choice in the following.

We consider the following infinitesimal double transformation δ = δ(l) of poten-

tial H(J):

δH(J) = −J2 1

l
[F (l; J)TF (l; J)−1 − T ]Ω , (4.2)

where l is a (finite) real parameter, F (l; J) is a solution of (3.17)–(3.19) with t

being replaced by l, T = Taαa ∈ o(d, d) (the Lie algebra of the orthogonal group

O(d, d)), Ta are generators of o(d, d), αa are infinitesimal real constants. Thus we

have relation

T>Ω + ΩT = 0 . (4.3)

Now we prove that (4.2) is a hidden symmetry transformation of the double-

complex EKR motion equation (3.10) and conditions (3.1). First, from (4.2), (4.3),

(3.19a) and T+ = T> in the real Lie algebra o(d, d), we have

δH(J) − δH(J)+ = −J2 1

l
[F (l; J)TF (l; J)−1 − T ]Ω

− J2 1

l
Ω
[

F (l; J)+−1T>F (l; J)+ − T>
]

= −J2 1

l
F (l; J)[TF (l; J)−1ΩF (l; J)+−1

+ F (l; J)−1ΩF (l; J)+−1T>]F (l; J)+

= −J2 λ(l)

l
F (l; J)(TΩ + ΩT>)F (l; J)+ = 0 . (4.4)
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From (3.8) and the definition of z(x, y), Eq. (4.4) implies that δM(J)> = δM(J)

and δz = 0.

In addition, Eqs. (3.8), (3.12) and (4.4) give M(J) = (J2/4l)[A(J)? − A(J)]Ω

and δM(J) = (1/2)[δH(J) + δH(J)>], then from (4.2), (4.3) and (3.19b) we have

δM(J)ΩM(J) + M(J)ΩδM(J)

=
J2

8l2
[(

J2F (l; J)TF (l; J)−1 + ΩF (l; J)>−1T>F (l; J)>Ω
)(

A(J) − A(J)?
)

+
(

A(J) − A(J)?
)(

J2F (l; J)TF (l; J)−1 + ΩF (l; J)>−1T>F (l; J)>Ω
)]

Ω

=
J2

4l2
[

J2A(J)F (l; J)TF (l; J)−1 − J2F (l; J)TF (l; J)−1A(J)?

− A(J)?ΩF (l; J)>−1T>F (l; J)>Ω + ΩF (l; J)>−1T>F (l; J)>ΩA(J)
]

Ω

=
J2

4l2
[

ΩF (l; J)>−1ΩTF (l; J)−1 + ΩF (l; J)>−1T>ΩF (l; J)−1

− λ(l)2F (l; J)TΩF (l; J)>Ω − λ(l)2F (l; J)ΩT>F (l; J)>Ω
]

Ω = 0 , (4.5)

where the relations

A(J) + A(J)? = 2(1− 2lz) , A(J)A(J)? = λ(l)2 (4.6)

have been used. Equation (4.5) implies that, under the transformation (4.2), the

condition (3.1b) is preserved and δρ = 0.

Now we investigate the equation satisfied by δH(J). From (4.2) and (3.17), it

follows that d(δH) = −(J2/l)[Γ(l; J)Ω, F (l; J)TF (l; J)−1]Ω, this and (3.13), (3.10)

further followed by

2(z + ρ∗)d(δH(J)) = (H(J) + H(J)>)Ωd(δH(J))

−
1

l
[(H(J) + H(J)>)Ω, F (l; J)TF (l; J)−1]Γ(l; J) . (4.7)

On the other hand, from (4.2), (4.3), (3.12), (3.16) and (3.19b) we have

(δH(J) + δH(J)>)Ω dH(J)

= −
J2

l2
[F (l; J)TF (l; J)−1Ω − ΩF (l; J)>−1T>F (l; J)>]ΩA(l; J)Γ(l; J)

= −
1

l
[(H(J) + H(J)>)Ω, F (l; J)TF (l; J)−1]Γ(l; J) .

Substituting this into Eq. (4.7), we finally obtain

2(z + ρ∗)d(δH(J)) = (H(J) + H(J)>)Ωd(δH(J)) + (δH(J) + δH(J)>)Ω dH(J) .

(4.8)

Equations (4.8) and (4.4), (4.5) show that H(J)+δH(J) with δH(J) given by (4.2)

satisfies the same Eq. (3.10) and conditions (3.1a), (3.1b) as H(J) does, i.e. (4.2)

is indeed a double symmetry transformation for the EKR theory.
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Similarly, by using solution F̃ (s; J) of (3.25) and (3.26), we can construct

another parametrized double infinitesimal symmetry transformation of the EKR

theory as

δ̃H(J) = J2s[F̃ (s; J)T F̃ (s; J)−1 − T ]Ω , (4.9)

where s is a finite real parameter.

The set of symmetry transformations of the EKR theory can be further en-

larged. In addition to (4.2) and (4.9), we propose two other infinitesimal double

transformations

∆H(J) = J2σḞ (l; J)F (l; J)−1Ω , (4.10)

∆̃H(J) = −J2εs

[

s ˙̃F (s; J)F̃ (s; J)−1 +
1

2

]

Ω , (4.11)

where l, s both are finite real parameters and σ, ε are infinitesimal real constants.

From (4.10) and (3.19a),

∆H(J) − ∆H(J)+ = J2σ[Ḟ (l; J)F (l; J)−1Ω + ΩF (l; J)+−1Ḟ (l; J)+]

= −J2σλ(l)−1 ∂

∂l
λ(l)Ω

= J2 2σ

λ(l)2
[z(1 − 2lz)− 2lρ2]Ω , (4.12)

this and the definition of z(x, y) imply (∆M(J))> = ∆M(J) and ∆z = σ
λ(l)2 [z(1−

2lz)− 2lρ2].

Moreover, since M(J) = 1
2 [H(J)+H(J)?] and (∆M(J))> = ∆M(J) by (4.12),

we have

∆M(J) =
1

2
[∆H(J) + ∆H(J)?] =

1

2
[∆H(J)+ + ∆H(J)>] , (4.13a)

[∆M(J)ΩM(J) + M(J)Ω∆M(J)]> = ∆M(J)ΩM(J) + M(J)Ω∆M(J) . (4.13b)

Thus from (4.13a), (3.19b) and (4.6), it follows that

∆M(J)ΩM(J) + M(J)Ω∆M(J)

=
J2

8l

[(

∆H(J)+ + ∆H(J)>
)

Ω(A(J)? − A(J))

+ (A(J)? − A(J))
(

∆H(J)+ + ∆H(J)>
)

Ω
]

Ω

=
J2

4l
[∆H(J)+ΩA(J)? − ∆H(J)>ΩA(J)

+ A(J)?∆H(J)>Ω − A(J)∆H(J)+Ω]Ω
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=
σ

4l

[

Ω
∂

∂l
F (l; J)+−1ΩF (l; J)?−1Ω + Ω

∂

∂l
F (l; J)>−1ΩF (l; J)−1Ω

−
1

λ(l)2

(

A(J)?Ω
∂

∂l
F (l; J)>−1ΩF (l; J)−1A(J)?Ω

+ A(J)Ω
∂

∂l
F (l; J)+−1ΩF (l; J)?−1A(J)Ω

)]

,

then from (4.13b), (3.19b) and (4.6) we obtain

∆M(J)ΩM(J) + M(J)Ω∆M(J)

=
1

2

[

∆M(J)ΩM(J) + M(J)Ω∆M(J)

+ (∆M(J)ΩM(J) + M(J)Ω∆M(J))>
]

=
σJ2

8l

[(

∂

∂l
A(J) +

∂

∂l
A(J)?

)

−
1

λ(l)2

(

A(J)? ∂

∂l
A(J)A(J)? + A(J)

∂

∂l
A(J)?A(J)

)]

Ω

=
σJ2

8lλ(l)2

[

2λ(l)2
∂

∂l

(

A(J) + A(J)?
)

−
∂

∂l
(λ(l)2)

(

A(J) + A(J)?
)

]

Ω

= −
2σ

λ(l)2
J2ρ2Ω . (4.14)

This result shows that the double transformation (4.10) preserves the condition

(3.1b) provided ∆ρ = σ
λ(l)2 ρ, and we can also verify, by direct calculations, that

∗d(∆ρ) = d(∆z) as desired.

Now we consider the equation satisfied by the transformed fields. From (3.10),

(3.13), (3.14), (4.12) and (4.14), we have

2(∆z + ∆ρ∗)dH(J) = 2σ(z + ρ∗)Λ(l)−1dH(J)

=
σ

l
(H(J) + H(J)>)ΩΓ(l; J) . (4.15)

Moreover, from (4.10), (3.13), (3.14) and (3.17) we obtain

d∆H(J) = σΓ̇(l; J) + σJ2[Γ(l; J)Ω, Ḟ (l; J)F (l; J)−1]Ω . (4.16)

Multiplying (4.16) from left by 2(z+ρ∗) and using (3.10) and (4.16) again, it follows

that

2(z + ρ∗)d∆H(J) = σ[(H(J) + H(J)>)Ω, Ḟ (l; J)F (l; J)−1]Γ(l; J)

+ (H(J) + H(J)>)Ω d∆H(J) . (4.17)
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On the other hand, from (4.10), (3.12), (3.16) and (3.19b) we have

(∆H(J) + ∆H(J)>)Ω dH(J)

= J2σl−1[Ḟ (l; J)F (l; J)−1Ω + ΩF (l; J)>−1Ḟ (l; J)>]ΩA(J)Γ(l; J)

= σ[(H(J) + H(J)>)Ω, Ḟ (l; J)F (l; J)−1]Γ(l; J)

+ σl−1(H(J) + H(J)>)ΩΓ(l; J) . (4.18)

Finally, (4.15), (4.17) and (4.18) give

2(∆z + ∆ρ∗)dH(J) + 2(z + ρ∗)d∆H(J)

= (∆H(J) + ∆H(J)>)Ω dH(J) + (H(J) + H(J)>)Ω d∆H(J) . (4.19)

The above results show that (4.10) is indeed a double symmetry transformation

of Eq. (3.10) with conditions (3.1a), (3.1b).

Similarly, we can prove that (4.11), which gives ∆̃z = εs
λ̃(s)2

[z(s− 2z)− 2ρ2] and

∆̃ρ = εs2

λ̃(s)2
ρ, is also a double symmetry transformation of the EKR theory.

5. Infinite-Dimensional Algebra Structures of the

Double Symmetries

From the structures of the double transformations (4.2) and (4.9), we expand the

right-hand sides of them in powers of l and s, respectively, as

δH(J) =

∞
∑

n=0

lnδ(n)H(J) , (5.1a)

δ̃H(J) =

∞
∑

m=1

smδ̃(m)H(J) , (5.1b)

where the analytic property of F (l; J), F̃ (s; J) around l = 0, s = 0 is noted. Each

of δ(n) and δ̃(m) satisfies the same equations and conditions as δ and δ̃ do, thus

we have, in fact, constructed infinite many infinitesimal double hidden symmetry

transformations of the EKR theory. The algebraic structures of these transforma-

tions can be obtained as follows. Noticing the dependence of (4.2), (4.9) on the

parameters l, s and the infinitesimal constants αa in T , we denote the correspond-

ing transformations by δα(l), δ̃α(s), respectively. Thus we have

[δα(l), δβ(l′)]H(J)

= −J2 1

l

[

δβ(l′)F (l; J)F (l; J)−1, F (l; J)TαF (l; J)−1
]

Ω

+ J2 1

l′
[

δα(l)F (l′; J)F (l′; J)−1, F (l′; J)TβF (l′; J)−1
]

Ω , (5.2)
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[δα(l), δ̃β(s)]H(J)

= −J2 1

l
[δ̃β(s)F (l; J)F (l; J)−1, F (l; J)TαF (l; J)−1]Ω

− J2s[δα(l)F̃ (s; J)F̃ (s; J)−1, F̃ (s; J)TβF̃ (s; J)−1]Ω , (5.3)

[δ̃α(s), δ̃β(s′)]H(J)

= J2s[δ̃β(s′)F̃ (s; J) F̃ (s; J)−1, F̃ (s; J)TαF̃ (s; J)−1]Ω

− J2s′[δ̃α(s)F̃ (s′; J)F̃ (s′; J)−1, F̃ (s′; J)TβF̃ (s′; J)−1]Ω , (5.4)

where Tα = αaTa, δ(l′)F (l; J) = F (l, H(J) + δ(l′)H(J); J) − F (l, H(J); J), etc.

To obtain the above commutators explicitly, we need the variations of F (l; J),

F̃ (s; J) induced by δ(l′)H(J), δ̃(s′)H(J). It may be verified by tedious but straight-

forward calculations that we can take

δα(l′)F (l; J) =
l

l − l′
[F (l′; J)TαF (l′; J)−1 − F (l; J)TαF (l; J)−1]F (l; J) , (5.5)

δ̃α(s)F (l; J) =
ls

1 − ls
[F̃ (s; J)TαF̃ (s; J)−1 − F (l; J)TαF (l; J)−1]F (l; J) , (5.6)

δα(l)F̃ (s; J) =
1

1 − ls
[F (l; J)TαF (l; J)−1 − F̃ (s; J)TαF̃ (s; J)−1]F̃ (s; J) , (5.7)

δ̃α(s′)F̃ (s; J) =
s′

s − s′
[F̃ (s′; J)TαF̃ (s′; J)−1 − F̃ (s; J)TαF̃ (s; J)−1]F̃ (s; J) (5.8)

such that F (l; J) + δα(l′)F (l; J), F (l; J) + δ̃α(s)F (l; J) satisfy the same Eq. (3.17)

and conditions (3.18), (3.19) as F (l; J) does; while F̃ (s; J)+δα(l)F̃ (s; J), F̃ (s; J)+

δ̃α(s′)F̃ (s; J) satisfy the same Eq. (3.25) and conditions (3.26) as F̃ (s; J) does.

Substituting (5.5)–(5.8) into (5.2)–(5.4), using (4.2), (4.9) again and writing

δα(l)H(J) = αaδa(l)H(J), etc., we obtain

[δα(l), δβ(l′)]H(J) =
αaβb

l − l′
Cc

ab

(

lδc(l)H(J) − l′δc(l
′)H(J)

)

, (5.9)

[δα(l), δ̃β(s)]H(J) =
αaβb

1− ls
Cc

ab

(

lsδc(l)H(J) + δ̃c(s)H(J)
)

, (5.10)

[δ̃α(s), δ̃β(s′)]H(J) =
αaβb

s − s′
Cc

ab

(

s′δ̃c(s)H(J) − sδ̃c(s
′)H(J)

)

, (5.11)

where Cc
ab’s are structure constants of the Lie algebra o(d, d). Writing (5.1a), (5.1b)

in the explicitly α related forms as

δα(l)H(J) = αa
∞
∑

n=0

lnδ(n)
a H(J) , (5.12a)

δ̃α(s)H(J) = αa
∞
∑

m=1

smδ̃(m)
a H(J) , (5.12b)
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and then expanding both sides of (5.9)–(5.11), we finally obtain
[

δ(n)
a , δ

(m)
b

]

H(J) = Cc
abδ

(n+m)
c H(J) , n, m = 0,±1,±2, . . . , (5.13)

where δ
(−m)
a H(J) := δ̃

(m)
a H(J) for m ≥ 1. Thus, the infinite set of symmetry

transformations {δ
(n)
a , n = 0,±1,±2, . . .} constitute a double affine Kac–Moody

ô(d, d) algebra (without center charge).

Now we consider transformations (4.10), (4.11). They can be expanded as

∆H(J) = σ
∞
∑

n=0

ln∆(n)H(J) , (5.14a)

∆̃H(J) = ε

∞
∑

m=1

sm∆̃(m)H(J) . (5.14b)

Thus we obtain another infinite set of double symmetry transformations {∆(n),

∆̃(m), n = 0, 1, 2, . . . ; m = 1, 2, . . .} of the EKR theory. To calculate their commu-

tators, we first denote (4.10), (4.11) by ∆σ(l)H(J), ∆̃ε(s)H(J), respectively, and

then have

[∆σ(l), ∆σ′(l′)]H(J)

= J2σ
∂

∂l

(

∆σ′ (l′)F (l; J)F (l; J)−1
)

Ω

− J2σ′
∂

∂l′
(∆σ(l)F (l′; J)F (l′; J)−1)Ω

+ J2σ[∆σ′ (l′)F (l; J)F (l; J)−1, Ḟ (l; J)F (l; J)−1]Ω

− J2σ′[∆σ(l)F (l′; J)F (l′; J)−1, Ḟ (l′; J)F (l′; J)−1]Ω , (5.15)

[∆σ(l), ∆̃ε(s)]H(J)

= J2σ
∂

∂l

(

∆̃ε(s)F (l; J)F (l; J)−1
)

Ω

+ J2εs2 ∂

∂s

(

∆σ(l)F̃ (s; J)F̃ (s; J)−1
)

Ω

+ J2σ[∆̃ε(s)F (l; J)F (l; J)−1, Ḟ (l; J)F (l; J)−1]Ω

+ J2εs2[∆σ(l)F̃ (s; J)F̃ (s; J)−1, ˙̃F (s; J)F̃ (s; J)−1]Ω , (5.16)

[∆̃ε(s), ∆̃ε′(s
′)]H(J)

= −J2εs2 ∂

∂s

(

∆̃ε′(s
′)F̃ (s; J)F̃ (s; J)−1

)

Ω

+ J2ε′s′
2 ∂

∂s′
(

∆̃ε(s)F̃ (s′; J)F̃ (s′; J)−1
)

Ω

− J2εs2[∆̃ε′(s
′)F̃ (s; J)F̃ (s; J)−1, ˙̃F (s; J)F̃ (s; J)−1]Ω

+ J2ε′s′
2
[∆̃ε(s)F̃ (s′; J)F̃ (s′; J)−1, ˙̃F (s′; J)F̃ (s′; J)−1]Ω . (5.17)
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As for ∆σ(l′)F (l; J), ∆σ(l)F̃ (s; J), etc., we propose

∆σ(l′)F (l; J) = σ
l

l − l′
[lḞ (l; J)F (l; J)−1

− l
′
Ḟ (l′; J)F (l′; J)−1]F (l; J) , (5.18)

∆̃ε(s)F (l;J) = ε
ls

ls− 1

[

lḞ (l; J)F (l; J)−1 + s
˙̃

F (s;J)F̃ (s; J)−1 +
1

2

]

F (l; J) , (5.19)

∆σ(l)F̃ (s; J) = σ
1

ls− 1

[

s
˙̃

F (s;J)F̃ (s; J)−1 + lḞ (l; J)F (l; J)−1 +
1

2

]

F̃ (s; J) , (5.20)

∆̃ε(s
′)F̃ (s; J) = ε

s
′

s− s′
[s ˙̃

F (s; J)F̃ (s; J)−1
− s

′ ˙̃
F (s′; J)F̃ (s′; J)−1]F̃ (s;J) . (5.21)

By some lengthy but straightforward calculations, it can be verified that (5.18),

(5.19) are double symmetry transformations of Eq. (3.17) with conditions (3.18),

(3.19); while (5.20), (5.21) are double symmetry transformations of Eq. (3.25) with

conditions (3.26).

Substituting (5.18)–(5.21) into (5.15)–(5.17) and using (4.10), (4.11) again, it

follows that

[∆σ(l), ∆σ′(l′)]H(J)

= σ
∂

∂l

[

l

l − l′
(

l∆σ′(l)H(J) − l′∆σ′ (l′)H(J)
)

]

− σ′
∂

∂l′

[

l′

l′ − l

(

l′∆σ(l′)H(J) − l∆σ(l)H(J)
)

]

, (5.22)

[∆σ(l), ∆̃ε(s)]H(J)

= σ
∂

∂l

[

ls

ls− 1

(

l∆ε(l)H(J) − s−1∆̃ε(s)H(J)
)

]

+ εs2 ∂

∂s

[

1

ls − 1

(

l∆σ(l)H(J) − s−1∆̃σ(s)H(J)
)

]

, (5.23)

[∆̃ε(s), ∆̃ε′(s
′)]H(J)

= εs2 ∂

∂s

[

s′

s − s′
(

s−1∆̃ε′(s)H(J) − s′
−1

∆̃ε′(s
′)H(J)

)

]

− ε′s′
2 ∂

∂s′

[

s

s′ − s

(

s′
−1

∆̃ε(s
′)H(J) − s−1∆̃ε(s)H(J)

)

]

. (5.24)

By using (5.14a), (5.14b) to expand both sides of (5.22)–(5.24), we obtain

[∆(m), ∆(n)]H(J) = (m − n)∆(m+n)H(J) , m, n = 0,±1,±2, . . . , (5.25)

where we have written ∆(−n)H(J) := ∆̃(n)H(J) for n ≥ 1. This shows that the

infinite set of symmetry transformations {∆(n), n = 0, ±1, ±2, . . .} constitute a

double Virasoro algebra (without center charge).
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Next we investigate the commutators between the members of {δ(m)} and

{∆(n)}. For example, from (4.2), (4.10), (5.5) and (5.18) we have, by some cal-

culations

[∆σ(l), δa(s)]H(J) = σ
∂

∂l

[

l

l − s
(lδa(l)H(J) − sδa(s)H(J))

]

− σ
l

l − s

∂

∂l
(lδa(l)H(J)) + σ

s

l − s

∂

∂s
(sδa(s)H(J)) . (5.26)

Similarly, we can give out the expressions of [∆σ(l), δ̃a(s)]H(J), [∆̃σ(l), δa(s)]H(J)

and [∆̃σ(l), δ̃a(s)]H(J). Then by using (5.12a), (5.12b) and (5.14a), (5.14b) to

expand both sides of these results, we finally obtain

[∆(m), δ(n)
a ]H(J) = −nδ(m+n)

a H(J) , m, n = 0,±1,±2, . . . . (5.27)

Equations (5.13), (5.25) and (5.27) show that the symmetry transformations

(4.2), (4.9)–(4.11) give a double representation of semidirect product of the affine

ô(d, d) and Virasoro algebras. These give expression to that the infinite-dimensional

symmetry structures of the EKR theory contain not only the double Kac–Moody

ô(d, d) algebra but also the double Virasoro algebra and demonstrate that the theory

under consideration possesses richer symmetry structures than previously expected.

6. Summary and Discussions

By using the so-called ED-complex function method,32 the previously found double-

ness symmetry26 of the dimensionally reduced EKR theory is further exploited in

the present paper. A double-complex H-potential H(J) is introduced in (3.8) and

the motion equations of the EKR theory are written as a double-complex form

(3.10). Moreover, we also find that the theory under consideration has more double

symmetries which make us be able to establish a pair of ED-complex HE-type linear

systems (3.17)–(3.19), (3.25), (3.26). Based on these linear systems, we explicitly

construct the set of double symmetry transformations (4.2), (4.9)–(4.11). These

symmetries are verified to constitute double infinite-dimensional Lie algebras, each

of which is a semidirect product of the Kac–Moody ô(d, d) and Virasoro algebras.

These results show that the ED-complex method is necessary and more effective.

Some of the results in this paper cannot be obtained by the usual (non-ED-complex)

scheme.

We would like to indicate that although Eqs. (3.17) and (3.25) are, in form,

interrelated by t ↔ w = 1/t, the analytic properties of F (t; J) and F̃ (w; J) as well

as the conditions (3.18), (3.19) and (3.26) do not have this interrelation, therefore as

whole ED-complex linear systems they are different and give rise to different parts

of symmetries of the EKR theory. From (5.12)–(5.14), (5.25) and (5.27), we can

see that the double symmetry transformations (4.2), (4.10) constructed by using

F (t; J) give only the “nonnegative index” part of the “complete” double infinite-

dimensional Kac–Moody–Virasoro symmetry algebra and constitute a double sub-

algebra, while the double symmetry transformations (4.9), (4.11) constructed by
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using F̃ (w; J) give the “negative index” part of the “complete” double infinite-

dimensional symmetry algebra and do not constitute any subalgebra (only is a

double subset of the whole symmetry algebra).

Finite symmetry transformations relating to the above infinitesimal ones and

soliton solutions of the studied theory need more and further investigations and

will be considered in some forthcoming works.
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